مطالعه فارماکولوژی شبکهای از مسیرهای سیگنالدهی و ژنهای هدف ماده بربرین در درمان سرطان تخمدان با استفاده از تجزیه و تحلیل بیوانفورماتیکی
محورهای موضوعی : فصلنامه زیست شناسی جانوریساناز پناهی آلانق 1 , یاسمن خمینه 2 , محمود تلخابی 3
1 - گروه علوم جانوری و زیست شناسی دریا، دانشکده علوم و فناوری زیستی، دانشگاه شهید بهشتی، تهران، ایران
2 - گروه علوم جانوری و زیست شناسی دریا، دانشکده علوم و فناوری زیستی، دانشگاه شهید بهشتی، تهران، ایران
3 - گروه علوم جانوری و زیست شناسی دریا، دانشکده علوم و فناوری زیستی، دانشگاه شهید بهشتی، تهران، ایران
کلید واژه: سرطان تخمدان, بربرین, فارماکولوژی شبکه, DEGs, شبکه برهمکنش پروتئین-پروتئین,
چکیده مقاله :
سرطان تخمدان یکی از بیماریهای کشنده در زنان میباشد که تشخیص زودهنگام آن مشکل است. بنابراین، نیاز فوری به عوامل شیمیایی وجود دارد که میتواند در کنترل توسعه سرطان تخمدان کمک کند. بربرین، به عنوان یک ماده شیمیایی، دارای خواص آنتی اکسیدانی و دارویی متعددی است و نقش ضد سرطانی این ماده تحت پژوهش قرار دارد. هدف این مطالعه تجزیه و تحلیل ژنهای هدف بربرین در سرطان تخمدان و شناخت مسیرهای سیگنالدهی بربرین با استفاده از فارماکولوژی شبکه است. در این مطالعه، مجموعه داده GSE36668 از پایگاه داده GEO گرفته شد. ژنهای دارای بیان افتراقی(DEGs)، توسط GEO2R با 05/0 adj Pvalue < و 2≤∣logFC∣ مورد تجزیه و تحلیل قرار گرفت. اهداف مرتبط با بربرین از پایگاههای داده SwissTargetPrediction و Pharm Mapper جمعآوری شدند. شبکه برهمکنش پروتئین-پروتئین (PPI) اهداف مشترک بربرین و DEGs، بر اساس دادههای موجود در پایگاه داده String و با استفاده از نرمافزار Cytoscape ترسیم شد. ژنهاي مشترك در بربرین و سرطان تخمدان، در بررسی مسیرهاي زیستی (BP) و مولکولی (MF) و سلولی استفاده شدند. 10 ژن هاب انتخابی در این مطالعه شامل ESR1، STAT1، CDK1، RXRA، PIK3CA، PGR، CCNB1، CHEK1، PIK3R1 و PIK3CG بودند. همچنین مشخص شد ژنهای هدف بربرین میتوانند در مسیرهاي سیگنالدهی سرطان، سرطان زایی شیمیایی، تنش برشی سیال و آترواسکلروز، بلوغ تخمک با واسطه پروژسترون و مسیر سیگنالینگ PPAR، نقش داشته باشند. بر اساس این یافتهها بربرین میتواند بر بیان ژنهاي موثر در سرطان تخمدان و محصولات پروتئینی آنها اثر داشته و با اثر بر مسیرهاي زیستی دخیل در این بیماری، راهکار مناسبی براي درمان سرطان تخمدان باشد.
Ovarian cancer is one of the fatal diseases in women, which is difficult to diagnose early. Therefore, there is an urgent need for chemical agents that can help control the development of ovarian cancer. Berberine, as a chemical substance, has many antioxidant and medicinal properties, and the anti-cancer role of this substance is under research. This study aims to analyze berberine target genes in ovarian cancer and to identify berberine signaling pathways using network pharmacology. In this study, the dataset GSE36668 was taken from the GEO database. Differentially expressed genes (DEGs) were analyzed by GEO2R with adj p < 0.05 and ∣logFC∣ ≤ 2. Berberine-related targets were collected from SwissTargetPrediction and Pharm Mapper databases. The protein-protein interaction (PPI) network of berberine common targets and DEGs was drawn based on the data in the String database and using Cytoscape software. Common genes in berberine and ovarian cancer were used to investigate biological (BP), molecular (MF), and cellular pathways. The 10 hub genes selected in this study included ESR1, STAT1, CDK1, RXRA, PIK3CA, PGR, CCNB1, CHEK1, PIK3R1, and PIK3CG. It was also found that berberine target genes can play a role in cancer signaling pathways, chemical carcinogenesis, fluid shear stress and atherosclerosis, progesterone-mediated oocyte maturation, and PPAR signaling pathway. Based on these findings, berberine can affect the expression of genes that are effective in ovarian cancer and their protein products, and by affecting the biological pathways involved in this disease, it is a suitable solution for the treatment of ovarian cancer.
1. Akison L.K, Robker R.L.2012. The critical roles of progesterone receptor (PGR) in ovulation, oocyte developmental competence and oviductal transport in mammalian reproduction. Reproduction in Domestic Animals, 47 Suppl 4:288-96.
2. Campbell I.G, Russell S.E., Choong D.Y., Montgomery K.G., Ciavarella M.L., Hooi C.S. 2004. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer research, 64(21):7678-81.
3. Chu S.C, Yu C.C, Hsu L.S, Chen K-S, Su M.Y, Chen P.N. 2014. Berberine reverses epithelial-to-mesenchymal transition and inhibits metastasis and tumor-induced angiogenesis in human cervical cancer cells. Molecular pharmacology, 86(6):609-23.
4. Colombo N, Van Gorp T, Parma G, Amant F, Gatta G, Sessa C, Vergote I. 2006. Ovarian cancer. Critical reviews in oncology/hematology, 60(2):159-79.
5. Doherty J.A, Rossing M.A, Cushing-Haugen K.L, Chen C, Van Den Berg D.J, Wu A.H. 2010. ESR1/SYNE1 polymorphism and invasive epithelial ovarian cancer risk: an Ovarian Cancer Association Consortium study. Cancer epidemiology, biomarkers & prevention, 19(1):245-50.
6. Dustin D, Gu G, Fuqua SA. 2019. ESR1 mutations in breast cancer. Cancer, 125(21):3714-28.
7. Eissa L.A., Kenawy H.I., El-Karef A., Elsherbiny N.M., El-Mihi K.A. 2018. Antioxidant and anti-inflammatory activities of berberine attenuate hepatic fibrosis induced by thioacetamide injection in rats. Chemico-biological interactions, 294:91-100.
8. Elgaaen B.V., Olstad O.K., Sandvik L., Ødegaard E., Sauer T., Staff A..C, Gautvik K.M. 2012. ZNF385B and VEGFA are strongly differentially expressed in serous ovarian carcinomas and correlate with survival. PLOS ONE, 7(9):46317-46326
9. Gfeller D., Grosdidier A., Wirth M., Daina A., Michielin O., Zoete V. 2014. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic acids research, 42(W1):W32-W8.
10. Jahagirdar D, Gore CR, Patel H, Maria K, Tandon I, Sharma NK. 2018. Induction of apoptotic death and cell cycle arrest in HeLa cells by extracellular factors of breast cancer cells. Asian Pacific Journal of Cancer Prevention: APJCP, 19(12):3307.
11. Jeong S.Y., Seol D.W. 2008. The role of mitochondria in apoptosis. BMB reports, 41(1):11-22.
12. Jeselsohn R., Buchwalter G., De Angelis C., Brown M., Schiff R. 2015. ESR1 mutations—a mechanism for acquired endocrine resistance in breast cancer. Nature reviews Clinical oncology, 12(10):573-83.
13. Jia A., Xu L., Wang Y. 2021. Venn diagrams in bioinformatics. Briefings in bioinformatics, 22(5):bbab108.
14. Jie S., Li H., Tian Y., Guo D., Zhu J., Gao S., Jiang L. 2011. Berberine inhibits angiogenic potential of Hep G2 cell line through VEGF down‐regulation in vitro. Journal of gastroenterology and hepatology, 26(1):179-85.
15. Kang E.Y., Weir A., Meagher N.S., Farrington K., Nelson G.S, Ghatage P. 2023. CCNE1 and survival of patients with tubo-ovarian high-grade serous carcinoma: An Ovarian Tumor Tissue Analysis consortium study. Cancer, 129(5):697-713.
16. Kim M.K, James J, Annunziata C.M. 2015. Topotecan synergizes with CHEK1 (CHK1) inhibitor to induce apoptosis in ovarian cancer cells. BMc Cancer, 15:196.
17. Kim S., Chen J., Cheng T., Gindulyte A., He J., He S., Li Q., Shoemaker B.A., Thiessen P. A., Yu B., Zaslavsky L., Zhang J., Bolton E.E. (2023). PubChem 2023 update. Nucleic Acids Research, 51(D1), D1373–D1380.
18. Kolasa I.K., Rembiszewska A., Felisiak A, Ziolkowska-Seta I., Murawska M., Moes J. 2009. PIK3CA amplification associates with resistance to chemotherapy in ovarian cancer patients. Cancer biology & therapy, 8(1):21-6.
19. Kubeček O., Laco J., Špaček J., Petera J., Kopecký J., Kubečková A., Filip S. 2017. The pathogenesis, diagnosis, and management of metastatic tumors to the ovary: a comprehensive review. Clinical & experimental metastasis, 34(5):295-307.
20. Kuleshov M.V., Jones M.R., Rouillard A.D., Fernandez N.F., Duan Q., Wang Z. 2016. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic acids research, 44(W1):W90-W7.
21. Lee A.Y., Park W., Kang T.W., Cha MH., Chun J.M. 2018. Network pharmacology-based prediction of active compounds and molecular targets in Yijin-Tang acting on hyperlipidaemia and atherosclerosis. Journal of ethnopharmacology, 221:151-9.
22. Lengyel E. 2010. Ovarian cancer development and metastasis. The American journal of pathology, 177(3):1053-64.
23. Li H., Guo L., Jie S., Liu W., Zhu J., Du W. 2008. Berberine inhibits SDF-1-induced AML cells and leukemic stem cells migration via regulation of SDF-1 level in bone marrow stromal cells. Biomedicine & Pharmacotherapy, 62(9):573-8.
24. Li X., Wang F., Xu X., Zhang J., Xu G. 2021. The dual role of STAT1 in ovarian cancer: insight into molecular mechanisms and application potentials. Frontiers in Cell and Developmental Biology, 9:636595.
25. Liu D., Meng X., Luo H. 2019. A natural isoquinoline alkaloid with antitumor activity: studies of the biological activities of berberine. Frontiers in pharmacology, 10:437939.
26. Ma W., Zhu M., Zhang D., Yang L., Yang T., Li X., Zhang Y. 2017. Berberine inhibits the proliferation and migration of breast cancer ZR-75-30 cells by targeting Ephrin-B2. Phytomedicine, 25:45-51.
27. Matera R., Saif M.W. 2017. New therapeutic directions for advanced pancreatic cancer: cell cycle inhibitors, stromal modifiers and conjugated therapies. Expert Opinion on Emerging Drugs, 22(3):223-33.
28. Momenimovahed Z., Tiznobaik A., Taheri S., Salehiniya H. 2019. Ovarian cancer in the world: epidemiology and risk factors. International journal of women's health, 287-99.
29. Naqi A., Ara S.A., Khan M.A., Ahmad J. 2022. Chapter 4 - An insight on PI3K/AKT/MTOR inhibitors in cancer: Opportunity and translational perspectives. In: Hassan MI, Noor S, editors. Protein Kinase Inhibitors: Academic Press, p. 97-127.
30. Natanzon Y., Goode E.L., Cunningham J.M. 2018. Epigenetics in ovarian cancer. Seminars in cancer biology; Elsevier.
31. Okubo S., Uto T., Goto A., Tanaka H., Nishioku T., Yamada K., Shoyama Y. 2017. Berberine induces apoptotic cell death via activation of caspase-3 and-8 in HL-60 human leukemia cells: nuclear localization and structure–activity relationships. The American Journal of Chinese Medicine, 45(07):1497-511.
32. Peluso J.J., Liu X., Saunders M.M., Claffey K.P., Phoenix K. 2008. Regulation of ovarian cancer cell viability and sensitivity to cisplatin by progesterone receptor membrane component-1. The Journal of Clinical Endocrinology & Metabolism, 93(5):1592-9.
33. Qi H.W., Xin L.y., Xu X., Ji X.X., Fan L.H. 2014. Epithelial-to-mesenchymal transition markers to predict response of Berberine in suppressing lung cancer invasion and metastasis. Journal of translational medicine, 12:1-10.
34. Ranuncolo S.M., Polo J.M., Melnick A. 2008. BCL6 represses CHEK1 and suppresses DNA damage pathways in normal and malignant B-cells. Blood cells, molecules, and diseases, 41(1):95-9.
35. Rosenfield R.L. 2015. The polycystic ovary morphology-polycystic ovary syndrome spectrum. Journal of pediatric and adolescent gynecology, 28(6):412-9.
36. Semba S., Itoh N., Ito M., Youssef E.M., Harada M., Moriya T. 2002. Down-regulation of PIK3CG, a catalytic subunit of phosphatidylinositol 3-OH kinase, by CpG hypermethylation in human colorectal carcinoma. Clin Cancer Research, 8(12):3824-31.
37. Shameer K., Badgeley M.A.., Miotto R, Glicksberg B.S., Morgan J.W., Dudley J.T. 2017. Translational bioinformatics in the era of real-time biomedical, health care and wellness data streams. Briefings in bioinformatics, 18(1):105-24.
38. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research, 13(11):2498-504.
39. Szklarczyk D., Franceschini A., Wyder S, Forslund K., Heller D., Huerta-Cepas J. 2015. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic acids research, 43(D1):D447-D52.
40. Tang D., Chen M., Huang X., Zhang G., Zeng L., Zhang G. 2023. SRplot: A free online platform for data visualization and graphing. PLoS One, 18(11):e0294236.
41. Tontonoz P., Graves R.A., Budavari A.I., Erdjument-Bromage H., Lui M., Hu E. 1994. Adipocyte-specific transcription factor ARF6 is a heterodimeric complex of two nuclear hormone receptors, PPAR7 and RXRa. Nucleic acids research, 22(25):5628-34.
42. Ubersax JA, Woodbury EL, Quang PN, Paraz M, Blethrow JD, Shah K, et al. 2003. Targets of the cyclin-dependent kinase Cdk1. Nature, 425(6960):859-64.
43. Vallejo-Díaz J., Chagoyen M., Olazabal-Morán M., González-García A., Carrera A.C. 2019. The Opposing Roles of PIK3R1/p85α and PIK3R2/p85β in Cancer. Trends Cancer, 5(4):233-44.
44. Vivanco I., Sawyers C.L. 2002. The phosphatidylinositol 3-kinase–AKT pathway in human cancer. Nature Reviews Cancer, 2(7):489-501.
45. Wang D., Li C, Zhang Y., Wang M., Jiang N., Xiang L. 2016. Combined inhibition of PI3K and PARP is effective in the treatment of ovarian cancer cells with wild-type PIK3CA genes. Gynecol Oncol, 142(3):548-56.
46. Wang Q, Bode AM, Zhang T. 2023. Targeting CDK1 in cancer: mechanisms and implications. NPJ precision oncology, 7(1):58.
47. Wang S., Gao J., Li Q., Ming W., Fu Y., Song L., Qin J. 2020. Study on the regulatory mechanism and experimental verification of icariin for the treatment of ovarian cancer based on network pharmacology. Journal of ethnopharmacology, 262:113189.
48. Wang X., Wang N., Li H., Liu M., Cao F., Yu X. 2016. Up-regulation of PAI-1 and down-regulation of uPA are involved in suppression of invasiveness and motility of hepatocellular carcinoma cells by a natural compound berberine. International Journal of Molecular Sciences, 17(4):577.
49. Wang Z, Wang Y-y. 2013. Modular pharmacology: deciphering the interacting structural organization of the targeted networks. Drug discovery today, 18(11-12):560-6.
50. Xin W., Zi-Yi W., Zheng J-H, Shao L. 2021. TCM network pharmacology: a new trend towards combining computational, experimental and clinical approaches. Chinese journal of natural medicines, 19(1):1-11.
51. Yang W., Cho H., Shin H-Y., Chung J-Y., Kang E.S., Lee E.j, Kim J.H. 2016. Accumulation of cytoplasmic Cdk1 is associated with cancer growth and survival rate in epithelial ovarian cancer. Oncotarget, 7(31):49481.
52. Yang X, Zhu S, Li L, Zhang L, Xian S, Wang Y, Cheng Y. 2018. Identification of differentially expressed genes and signaling pathways in ovarian cancer by integrated bioinformatics analysis. OncoTargets and therapy, 1457-74.
53. Yuan S., Xu Y., Yi T., Wang H. 2022. The anti-tumor effect of OP-B on ovarian cancer in vitro and in vivo, and its mechanism: An investigation using network pharmacology-based analysis. Journal of Ethnopharmacology, 283:114706.
54. Zhang Y., Liu Z. 2017. STAT1 in cancer: friend or foe? Discovery medicine, 24(130):19-29.
55. Zheng S. 2001. The expression of RAR/RXR and RA sensitivity in primary ovarian tumor cells: Temple University.